Birzeit University
 Mathematics Department
 Math 234

Second Exam
Summer Semester 2008
Student Name: \qquad Number: .Section:
Instructor Dr. K. Altakhman
Question 1 (60 points). True of False
(1) (\ldots) If A is a nonzero 3×2 matrix such that $A x=0$ has none zero solutions, then $\operatorname{rank}(A)=1$.
(2) Let A, B be two row equivalent matrices, Mark each of the following by true or false
(...) Column space of $A=$ Column space of B
(...) Row space of $A=$ Row space of B
(...) Null space of $A=$ Null space of B
(3) (...) If A is a 3×5-matrix, then there exists 3 columns of A that are linearly independent.
(4) Let A be an 6×4 matrix, and $N(A)=\{0\}$. Mark each of the following by true or false
(...) The system $A x=b$ is consistent for every $b \in \mathbb{R}^{n}$.
(...) The columns of A span \mathbb{R}^{6}.
(...) Nullity of A is 4 .
(...) The rows of A form a spanning set for \mathbb{R}^{4}
(...) The columns of A are linearly independent.
(5) Let A be a 3×5-matrix. Mark each of the following by true or false
(...) The system $A x=0$ has only the zero solution.
(...) The columns of A form a spanning set for \mathbb{R}^{3}.
$(\ldots) 3 \leq \operatorname{rank}(A) \leq 5$.
(...) The columns of A are linearly independent.
(...) The rows of A are linearly dependent.
(6) Let A be a 3×5 matrix and $\operatorname{rank}(A)=3$. Mark each of the following by true or false
(...) The rows of A are linearly independent.
(...) The columns of A are linearly independent.
(...) The system $A x=0$ has only the zero solution.
(7) Let A be a 4×4 matrix, $\operatorname{rank}(A)=3$. Mark each of the following by true or false
(...) The rows of A are linearly dependent.
(...) The system $A x=b$ is consistent for every $b \in \mathbb{R}^{n}$.
(...) Nullity of A is 1 .
(...) A is nonsingular.
(...) The columns of A form a basis for \mathbb{R}^{4}.
(8) (...) If A is an $n \times n$ singular matrix, $\operatorname{then} \operatorname{rank}(A)=n$.
(9) (...) Every spanning set for $\mathbb{R}^{2 \times 2}$ contains at least 4 vectors.
(10) (...) The set $W=\left\{p(x) \in P_{5}\right.$: degree of $p(x)$ is even $\}$ is a subspace of P_{5}.
(11) (...) If U and W are subspaces of a vector space V, then $U \cap W \neq \Phi$.
(12) (...) Let $S=\left\{v_{1}, v_{2}, \cdots, v_{r}\right\}$ be a set of vectors in \mathbb{R}^{n}. If $r>n$, then S is not a spanning set for \mathbb{R}^{n}.
(13) (...) If $f_{1}, f_{2}, \cdots, f_{n} \in C^{n-1}[a, b]$ and $W\left[f_{1}, f_{2}, \cdots, f_{n}\right](x)=0$, for all $x \in[a, b]$, then $f_{1}, f_{2}, \cdots, f_{n}$ are linearly dependent.
(14) (...) If a matrix A is row equivalent to B, then the nonzero rows of B form a basis for the row space of A.
(15) (...) If A is an $n \times n$ matrix and the row space of A is $\mathbb{R}^{1 \times n}$, then the column space of A is \mathbb{R}^{n}.
(16) (...) The vector $(3,-1,0)^{T}$ is in $\operatorname{span}\left\{(2,-1,3)^{T},(-1,1,1)^{T},(1,1,9)^{T}\right\}$
(17) (...) If A is an $m \times n$ matrix, $m>n$, then either the rows or the columns of A are linearly independent.
(18) (...) If A is a 6×3-matrix, with $\operatorname{rank}(A)=3$, then the system $A x=0$ has only the zero solution.
(19) (...) If $S=\left\{v_{1}, \cdots, v_{n}\right\}$ is a linearly independent subset of a vector space V, and v is not in $\operatorname{Span}(S)$, then $\left\{v_{1}, \cdots, v_{n}, v\right\}$ are linearly independent.
(20) (...) If A is a nonzero 3×2 matrix such that $A x=0$ has nonzero solutions, then $\operatorname{rank}(A)=1$.
(21) (...) In \mathbb{R}^{3} every set with more than 3 vectors can be reduced to a basis for \mathbb{R}^{3}.
(22) (\ldots) If A is a nonsingular $n \times n$ matrix, then the columns of A are linearly independent.
(23) (...) Let V be a vector space with $\operatorname{dim}(V)=4$ and S a subspace of V. If $v_{1}, v_{2}, v_{3}, v_{4} \in V$ with $\operatorname{span}\left(v_{1}, v_{2}, v_{3}, v_{4}\right)=S$, then $v_{1}, v_{2}, v_{3}, v_{4}$ are linearly independent.
(24) (...) If A is a square matrix, and the nullity of A is not zero, then the rows of A are linearly independent.

Question 2 (24 points). Circle the most correct answer
(1) The transition matrix from the ordered basis $\left[e_{1}, e_{2}\right]$ to the ordered basis $\left[\binom{1}{3},\binom{1}{2}\right]$ is
(a) $\left(\begin{array}{cc}-2 & 1 \\ 3 & -1\end{array}\right)$
(b) $\left(\begin{array}{ll}1 & 1 \\ 3 & 2\end{array}\right)$
(c) $\left(\begin{array}{cc}2 & -1 \\ -3 & 1\end{array}\right)$
(d) $\left(\begin{array}{cc}-1 & 1 \\ 3 & -2\end{array}\right)$
(2) let A be a 5×3-matrix, if the row echelon form of A has 2 nonzero rows, then nullity (A) is
(a) 3
(b) 2
(c) 1
(d) 0
(3) If A is a nonzero 3×5 matrix, then
(a) $0 \leq \operatorname{nullity}(A) \leq 3$
(b) $1 \leq \operatorname{nullity}(A) \leq 3$
(c) $2 \leq \operatorname{nullity}(A) \leq 4$
(d) $0 \leq \operatorname{nullity}(A) \leq 2$
(4) If A is a singular $n \times n$-matrix, then
(a) $0 \leq \operatorname{rank}(A) \leq n$
(b) $0 \leq \operatorname{rank}(A)<n$
(c) $0<\operatorname{rank}(A)<n$
(d) $0<\operatorname{rank}(A) \leq n$
(5) If A is an $m \times n$-matrix, $b \in$ column space of A and the columns of A are linearly independent, then the system $A x=b$ has
(a) no solution
(b) exactly one solution
(c) infinitely many solutions
(d) none
(6) $\operatorname{dim}\left(\operatorname{span}\left(x^{2}, 3+x^{2}, x^{2}+1\right)\right)$ is
(a) 0
(b) 1
(c) 2
(d) 3
(7) One of the following sets is a subspace of P_{4}
(a) $\left\{f(x) \in P_{4}: f(0)=1\right\}$
(b) $\left\{f(x) \in P_{4}: f(1)=1\right\}$
(c) $\left\{f(x) \in P_{4}: f(1)=0\right\}$
(d) $\left\{f(x) \in P_{4}: f(x)=x^{3}+b x^{2}+c x, b, c \in \mathbb{R}\right\}$
(8) Let v_{1}, v_{2} be linearly independent in a vector space $V, V \neq \operatorname{span}\left(v_{1}, v_{2}\right)$, then
(a) $\operatorname{dim}(V) \geq 2$
(b) $\operatorname{dim}(V) \geq 3$
(c) $\operatorname{dim}(V) \leq 2$
(d) $\operatorname{dim}(V) \leq 3$
(9) If A is an $n \times n$-matrix and for each $b \in \mathbb{R}^{n}$ the system $A x=b$ is consistent, then
(a) A is nonsingular
(b) $\operatorname{rank}(A)=n$
(c) $\operatorname{nullity}(A)=0$
(d) all of the above
(10) If V is a vector space and $\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$ is a spanning set for V and $v_{n+1} \in V$, then
(a) the set $\left\{v_{1}, v_{2}, \cdots, v_{n+1}\right\}$ is not a spanning set.
(b) $v_{1}, v_{2}, \cdots, v_{n+1}$ are linearly independent
(c) $v_{1}, v_{2}, \cdots, v_{n+1}$ are linearly dependent
(d) none
(11) $S=\left\{a x^{3}+a x^{2}+c x-b(x+1)+c \mid a, b, c \in \mathbb{R}\right\}$ is a subspace of P_{4}. A basis for S is
(a) $\left\{x^{3}+x^{2}, x+1,1\right\}$
(b) $\left\{x^{3}+x^{2}, x^{2},\right\}$
(c) $\left\{x^{3}+x^{2}, x+1\right\}$
(d) $\left\{x^{3}+x^{2}, x^{2}+1\right\}$
(12) Let A be an $m \times n$ matrix. If the columns of A span \mathbb{R}^{m}, then
(a) $n \leq m$
(b) $m \leq n$
(c) $n=m$
(d) the columns of A form a basis for \mathbb{R}^{n}.

Question 3. [5\%] Let A be an $n \times n$-matrix. Prove that $\operatorname{rank}(A)=n$ if and only if $\operatorname{det}(A) \neq 0$.

Question 4 (6 points). Let $E=\left[1, x+1, x^{2}\right], F=\left[1+x, x+x^{2}, 2+x^{2}\right]$ be two bases for P_{3}
(a) Find the transition matrix from E to F.
(b) Find the coordinate vector of $p(x)=2 x^{2}-x-1$ with respect to F.

Question 5 (6 points). If $A=\left(\begin{array}{ccccc}1 & 1 & 0 & 2 & 0 \\ 1 & 2 & -1 & 0 & 1 \\ 2 & 3 & -1 & 2 & 1 \\ 4 & 5 & -1 & 6 & 1\end{array}\right)$
(a) Find a basis for the row space of A.
(b) Find a basis for the column space of A.
(c) Find $\operatorname{Rank}(A), \operatorname{Nullity}(A)$.

