Birzeit University Mathematics Department Math 234

Question 1 (60 points). True of False

- (1) (...) If A is a nonzero 3×2 matrix such that Ax = 0 has none zero solutions, then rank(A) = 1.
- (2) Let A, B be two row equivalent matrices, Mark each of the following by true or false
 - (\ldots) Column space of A = Column space of B
 - (\ldots) Row space of A =Row space of B
 - (\ldots) Null space of A = Null space of B
- (3) (...) If A is a 3×5 -matrix, then there exists 3 columns of A that are linearly independent.
- (4) Let A be an 6×4 matrix, and $N(A) = \{0\}$. Mark each of the following by true or false
 - (...) The system Ax = b is consistent for every $b \in \mathbb{R}^n$.
 - (...) The columns of A span \mathbb{R}^6 .
 - (\ldots) Nullity of A is 4.
 - (\ldots) The rows of A form a spanning set for \mathbb{R}^4
 - (\ldots) The columns of A are linearly independent.
- (5) Let A be a 3×5 -matrix. Mark each of the following by true or false
 - (\ldots) The system Ax = 0 has only the zero solution.
 - (\ldots) The columns of A form a spanning set for \mathbb{R}^3 .
 - $(\ldots) \ 3 \le \operatorname{rank}(A) \le 5.$
 - (\ldots) The columns of A are linearly independent.
 - (\ldots) The rows of A are linearly dependent.
- (6) Let A be a 3×5 matrix and rank(A) = 3. Mark each of the following by true or false
 - (\ldots) The rows of A are linearly independent.
 - (\ldots) The columns of A are linearly independent.
 - (\ldots) The system Ax = 0 has only the zero solution.
- (7) Let A be a 4×4 matrix, rank(A) = 3. Mark each of the following by true or false
 - (\ldots) The rows of A are linearly dependent.
 - (\ldots) The system Ax = b is consistent for every $b \in \mathbb{R}^n$.
 - (\ldots) Nullity of A is 1.
 - (\ldots) A is nonsingular.
 - (\ldots) The columns of A form a basis for \mathbb{R}^4 .

- (8) (...) If A is an $n \times n$ singular matrix, then rank(A) = n.
- (9) (...) Every spanning set for $\mathbb{R}^{2\times 2}$ contains at least 4 vectors.
- (10) (...) The set $W = \{p(x) \in P_5 : \text{degree of } p(x) \text{ is even}\}$ is a subspace of P_5 .
- (11) (...) If U and W are subspaces of a vector space V, then $U \cap W \neq \Phi$.
- (12) (...) Let $S = \{v_1, v_2, \dots, v_r\}$ be a set of vectors in \mathbb{R}^n . If r > n, then S is not a spanning set for \mathbb{R}^n .
- (13) (...) If $f_1, f_2, \dots, f_n \in C^{n-1}[a, b]$ and $W[f_1, f_2, \dots, f_n](x) = 0$, for all $x \in [a, b]$, then f_1, f_2, \dots, f_n are linearly dependent.
- (14) (...) If a matrix A is row equivalent to B, then the nonzero rows of B form a basis for the row space of A.
- (15) (...) If A is an $n \times n$ matrix and the row space of A is $\mathbb{R}^{1 \times n}$, then the column space of A is \mathbb{R}^n .
- (16) (...) The vector $(3, -1, 0)^T$ is in span $\{(2, -1, 3)^T, (-1, 1, 1)^T, (1, 1, 9)^T\}$
- (17) (...) If A is an $m \times n$ matrix, m > n, then either the rows or the columns of A are linearly independent.
- (18) (...) If A is a 6×3 -matrix, with rank(A) = 3, then the system Ax = 0 has only the zero solution.
- (19) (...) If $S = \{v_1, \dots, v_n\}$ is a linearly independent subset of a vector space V, and v is not in Span(S), then $\{v_1, \dots, v_n, v\}$ are linearly independent.
- (20) (...) If A is a nonzero 3×2 matrix such that Ax = 0 has nonzero solutions, then rank(A) = 1.
- (21) (...) In \mathbb{R}^3 every set with more than 3 vectors can be reduced to a basis for \mathbb{R}^3 .
- (22) (...) If A is a nonsingular $n \times n$ matrix, then the columns of A are linearly independent.
- (23) (...) Let V be a vector space with dim(V) = 4 and S a subspace of V. If $v_1, v_2, v_3, v_4 \in V$ with span $(v_1, v_2, v_3, v_4) = S$, then v_1, v_2, v_3, v_4 are linearly independent.
- (24) (...) If A is a square matrix, and the nullity of A is not zero, then the rows of A are linearly independent.

Question 2 (24 points). Circle the most correct answer

(1) The transition matrix from the ordered basis $[e_1, e_2]$ to the ordered basis $\begin{bmatrix} 1\\3 \end{bmatrix}, \begin{bmatrix} 1\\2 \end{bmatrix}$ is

(a)
$$\begin{pmatrix} -2 & 1 \\ 3 & -1 \end{pmatrix}$$

(b)
$$\begin{pmatrix} 1 & 1 \\ 3 & 2 \end{pmatrix}$$

(c)
$$\begin{pmatrix} 2 & -1 \\ -3 & 1 \end{pmatrix}$$

(d)
$$\begin{pmatrix} -1 & 1 \\ 3 & -2 \end{pmatrix}$$

(2) let A be a 5×3 -matrix, if the row echelon form of A has 2 nonzero rows, then nullity(A) is

- (a) 3
- (b) 2
- (c) 1
- (d) 0
- (3) If A is a nonzero 3×5 matrix, then
 - (a) $0 \le \text{nullity}(A) \le 3$
 - (b) $1 \le \text{nullity}(A) \le 3$
 - (c) $2 \le \text{nullity}(A) \le 4$
 - (d) $0 \le \text{nullity}(A) \le 2$
- (4) If A is a singular $n \times n$ -matrix, then
 - (a) $0 \le \operatorname{rank}(A) \le n$
 - (b) $0 \leq \operatorname{rank}(A) < n$
 - (c) $0 < \operatorname{rank}(A) < n$
 - (d) $0 < \operatorname{rank}(A) \le n$
- (5) If A is an $m \times n$ -matrix, $b \in$ column space of A and the columns of A are linearly independent, then the system Ax = b has
 - (a) no solution
 - (b) exactly one solution
 - (c) infinitely many solutions
 - (d) none
- (6) dim $(\text{span}(x^2, 3 + x^2, x^2 + 1))$ is
 - (a) 0
 - (b) 1
 - (c) 2
 - (d) 3
- (7) One of the following sets is a subspace of P_4
 - (a) $\{f(x) \in P_4 : f(0) = 1\}$
 - (b) $\{f(x) \in P_4 : f(1) = 1\}$
 - (c) $\{f(x) \in P_4 : f(1) = 0\}$
 - (d) $\{f(x) \in P_4 : f(x) = x^3 + bx^2 + cx, b, c \in \mathbb{R}\}$

- (8) Let v_1, v_2 be linearly independent in a vector space $V, V \neq \text{span}(v_1, v_2)$, then
 - (a) $\dim(V) \ge 2$
 - (b) $\dim(V) \ge 3$
 - (c) $\dim(V) \le 2$
 - (d) $\dim(V) \leq 3$
- (9) If A is an $n \times n$ -matrix and for each $b \in \mathbb{R}^n$ the system Ax = b is consistent, then
 - (a) A is nonsingular
 - (b) $\operatorname{rank}(A) = n$
 - (c) $\operatorname{nullity}(A) = 0$
 - (d) all of the above

(10) If V is a vector space and $\{v_1, v_2, \dots, v_n\}$ is a spanning set for V and $v_{n+1} \in V$, then

- (a) the set $\{v_1, v_2, \cdots, v_{n+1}\}$ is not a spanning set.
- (b) $v_1, v_2, \cdots, v_{n+1}$ are linearly independent
- (c) $v_1, v_2, \cdots, v_{n+1}$ are linearly dependent
- (d) none

(11) $S = \{ax^3 + ax^2 + cx - b(x+1) + c | a, b, c \in \mathbb{R}\}$ is a subspace of P_4 . A basis for S is

- (a) $\{x^3 + x^2, x + 1, 1\}$
- (b) $\{x^3 + x^2, x^2, \}$
- (c) $\{x^3 + x^2, x + 1\}$

(d)
$$\{x^3 + x^2, x^2 + 1\}$$

(12) Let A be an $m \times n$ matrix. If the columns of A span \mathbb{R}^m , then

- (a) $n \leq m$
- (b) $m \le n$
- (c) n = m
- (d) the columns of A form a basis for \mathbb{R}^n .

Question 3. [5%] Let A be an $n \times n$ -matrix. Prove that $\operatorname{rank}(A) = n$ if and only if $\det(A) \neq 0$.

Question 4 (6 points). Let $E = [1, x + 1, x^2]$, $F = [1 + x, x + x^2, 2 + x^2]$ be two bases for P_3

- (a) Find the transition matrix from E to F.
- (b) Find the coordinate vector of $p(x) = 2x^2 x 1$ with respect to F.

Question 5 (6 points). If
$$A = \begin{pmatrix} 1 & 1 & 0 & 2 & 0 \\ 1 & 2 & -1 & 0 & 1 \\ 2 & 3 & -1 & 2 & 1 \\ 4 & 5 & -1 & 6 & 1 \end{pmatrix}$$

- (a) Find a basis for the row space of A.
- (b) Find a basis for the column space of A.
- (c) Find $\operatorname{Rank}(A)$, $\operatorname{Nullity}(A)$.